Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cell Rep ; 35(6): 109101, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33979616

RESUMO

Depleting the microenvironment of important nutrients such as arginine is a key strategy for immune evasion by cancer cells. Many tumors overexpress arginase, but it is unclear how these cancers, but not T cells, tolerate arginine depletion. In this study, we show that tumor cells synthesize arginine from citrulline by upregulating argininosuccinate synthetase 1 (ASS1). Under arginine starvation, ASS1 transcription is induced by ATF4 and CEBPß binding to an enhancer within ASS1. T cells cannot induce ASS1, despite the presence of active ATF4 and CEBPß, as the gene is repressed. Arginine starvation drives global chromatin compaction and repressive histone methylation, which disrupts ATF4/CEBPß binding and target gene transcription. We find that T cell activation is impaired in arginine-depleted conditions, with significant metabolic perturbation linked to incomplete chromatin remodeling and misregulation of key genes. Our results highlight a T cell behavior mediated by nutritional stress, exploited by cancer cells to enable pathological immune evasion.


Assuntos
Arginina/metabolismo , Cromatina/metabolismo , Evasão da Resposta Imune/genética , Neoplasias/genética , Linfócitos T/metabolismo , Animais , Humanos
2.
Nat Commun ; 12(1): 223, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431820

RESUMO

Enhancers are DNA sequences that enable complex temporal and tissue-specific regulation of genes in higher eukaryotes. Although it is not entirely clear how enhancer-promoter interactions can increase gene expression, this proximity has been observed in multiple systems at multiple loci and is thought to be essential for the maintenance of gene expression. Bromodomain and Extra-Terminal domain (BET) and Mediator proteins have been shown capable of forming phase condensates and are thought to be essential for super-enhancer function. Here, we show that targeting of cells with inhibitors of BET proteins or pharmacological degradation of BET protein Bromodomain-containing protein 4 (BRD4) has a strong impact on transcription but very little impact on enhancer-promoter interactions. Dissolving phase condensates reduces BRD4 and Mediator binding at enhancers and can also strongly affect gene transcription, without disrupting enhancer-promoter interactions. These results suggest that activation of transcription and maintenance of enhancer-promoter interactions are separable events. Our findings further indicate that enhancer-promoter interactions are not dependent on high levels of BRD4 and Mediator, and are likely maintained by a complex set of factors including additional activator complexes and, at some sites, CTCF and cohesin.


Assuntos
Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , Transcrição Gênica , Fator de Ligação a CCCTC/metabolismo , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Glicóis/farmacologia , Histonas/metabolismo , Humanos , Leucemia/genética , Leucemia/patologia , Modelos Genéticos , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/genética , Transcrição Gênica/efeitos dos fármacos , Coesinas
3.
Genes Dev ; 33(17-18): 1265-1279, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31395741

RESUMO

Chromosomal rearrangements of the mixed lineage leukemia (MLL) gene occur in ∼10% of B-cell acute lymphoblastic leukemia (B-ALL) and define a group of patients with dismal outcomes. Immunohistochemical staining of bone marrow biopsies from most of these patients revealed aberrant expression of BCL6, a transcription factor that promotes oncogenic B-cell transformation and drug resistance in B-ALL. Our genetic and ChIP-seq (chromatin immunoprecipitation [ChIP] combined with high-throughput sequencing) analyses showed that MLL-AF4 and MLL-ENL fusions directly bound to the BCL6 promoter and up-regulated BCL6 expression. While oncogenic MLL fusions strongly induced aberrant BCL6 expression in B-ALL cells, germline MLL was required to up-regulate Bcl6 in response to physiological stimuli during normal B-cell development. Inducible expression of Bcl6 increased MLL mRNA levels, which was reversed by genetic deletion and pharmacological inhibition of Bcl6, suggesting a positive feedback loop between MLL and BCL6. Highlighting the central role of BCL6 in MLL-rearranged B-ALL, conditional deletion and pharmacological inhibition of BCL6 compromised leukemogenesis in transplant recipient mice and restored sensitivity to vincristine chemotherapy in MLL-rearranged B-ALL patient samples. Oncogenic MLL fusions strongly induced transcriptional activation of the proapoptotic BH3-only molecule BIM, while BCL6 was required to curb MLL-induced expression of BIM. Notably, peptide (RI-BPI) and small molecule (FX1) BCL6 inhibitors derepressed BIM and synergized with the BH3-mimetic ABT-199 in eradicating MLL-rearranged B-ALL cells. These findings uncover MLL-dependent transcriptional activation of BCL6 as a previously unrecognized requirement of malignant transformation by oncogenic MLL fusions and identified BCL6 as a novel target for the treatment of MLL-rearranged B-ALL.


Assuntos
Regulação Leucêmica da Expressão Gênica , Proteína de Leucina Linfoide-Mieloide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/fisiopatologia , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Animais , Biomarcadores Tumorais/genética , Sobrevivência Celular/genética , Células Cultivadas , Deleção de Genes , Marcação de Genes , Humanos , Camundongos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Prognóstico , Regiões Promotoras Genéticas/genética
4.
Nat Commun ; 9(1): 1622, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29692408

RESUMO

Acute Myeloid Leukemia (AML) with MLL gene rearrangements demonstrate unique gene expression profiles driven by MLL-fusion proteins. Here, we identify the circadian clock transcription factor SHARP1 as a novel oncogenic target in MLL-AF6 AML, which has the worst prognosis among all subtypes of MLL-rearranged AMLs. SHARP1 is expressed solely in MLL-AF6 AML, and its expression is regulated directly by MLL-AF6/DOT1L. Suppression of SHARP1 induces robust apoptosis of human MLL-AF6 AML cells. Genetic deletion in mice delays the development of leukemia and attenuated leukemia-initiating potential, while sparing normal hematopoiesis. Mechanistically, SHARP1 binds to transcriptionally active chromatin across the genome and activates genes critical for cell survival as well as key oncogenic targets of MLL-AF6. Our findings demonstrate the unique oncogenic role for SHARP1 in MLL-AF6 AML.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Leucemia Mieloide Aguda/metabolismo , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinogênese , Transformação Celular Neoplásica , Feminino , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Camundongos Knockout , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Fatores de Transcrição/genética
5.
Cell Rep ; 18(2): 482-495, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28076791

RESUMO

Understanding the underlying molecular mechanisms of defined cancers is crucial for effective personalized therapies. Translocations of the mixed-lineage leukemia (MLL) gene produce fusion proteins such as MLL-AF4 that disrupt epigenetic pathways and cause poor-prognosis leukemias. Here, we find that at a subset of gene targets, MLL-AF4 binding spreads into the gene body and is associated with the spreading of Menin binding, increased transcription, increased H3K79 methylation (H3K79me2/3), a disruption of normal H3K36me3 patterns, and unmethylated CpG regions in the gene body. Compared to other H3K79me2/3 marked genes, MLL-AF4 spreading gene expression is downregulated by inhibitors of the H3K79 methyltransferase DOT1L. This sensitivity mediates synergistic interactions with additional targeted drug treatments. Therefore, epigenetic spreading and enhanced susceptibility to epidrugs provides a potential marker for better understanding combination therapies in humans.


Assuntos
Elementos Facilitadores Genéticos/genética , Leucemia/genética , Leucemia/patologia , Metiltransferases/antagonistas & inibidores , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Ilhas de CpG/genética , Metilação de DNA/genética , Regulação Leucêmica da Expressão Gênica , Genoma Humano , Histona-Lisina N-Metiltransferase , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lisina/metabolismo , Metiltransferases/metabolismo , Prognóstico , Ligação Proteica , Proteínas Proto-Oncogênicas/metabolismo
6.
Exp Hematol ; 47: 64-75, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27856324

RESUMO

Survival rates for children and adults carrying mutations in the Mixed Lineage Leukemia (MLL) gene continue to have a very poor prognosis. The most common MLL mutation in acute lymphoblastic leukemia is the t(4;11)(q21;q23) chromosome translocation that fuses MLL in-frame with the AF4 gene producing MLL-AF4 and AF4-MLL fusion proteins. Previously, we found that MLL-AF4 binds to the BCL-2 gene and directly activates it through DOT1L recruitment and increased H3K79me2/3 levels. In the study described here, we performed a detailed analysis of MLL-AF4 regulation of the entire BCL-2 family. By measuring nascent RNA production in MLL-AF4 knockdowns, we found that of all the BCL-2 family genes, MLL-AF4 directly controls the active transcription of both BCL-2 and MCL-1 and also represses BIM via binding of the polycomb group repressor 1 (PRC1) complex component CBX8. We further analyzed MLL-AF4 activation of the BCL-2 gene using Capture-C and identified a BCL-2-specific enhancer, consisting of two clusters of H3K27Ac at the 3' end of the gene. Loss of MLL-AF4 activity results in a reduction of H3K79me3 levels in the gene body and H3K27Ac levels at the 3' BCL-2 enhancer, revealing a novel regulatory link between these two histone marks and MLL-AF4-mediated activation of BCL-2.


Assuntos
Elementos Facilitadores Genéticos , Histonas/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Acetilação , Proteína 11 Semelhante a Bcl-2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Complexo Repressor Polycomb 1/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Translocação Genética
7.
Cell Rep ; 13(12): 2715-27, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26711339

RESUMO

Targeted therapies designed to exploit specific molecular pathways in aggressive cancers are an exciting area of current research. Mixed Lineage Leukemia (MLL) mutations such as the t(4;11) translocation cause aggressive leukemias that are refractory to conventional treatment. The t(4;11) translocation produces an MLL/AF4 fusion protein that activates key target genes through both epigenetic and transcriptional elongation mechanisms. In this study, we show that t(4;11) patient cells express high levels of BCL-2 and are highly sensitive to treatment with the BCL-2-specific BH3 mimetic ABT-199. We demonstrate that MLL/AF4 specifically upregulates the BCL-2 gene but not other BCL-2 family members via DOT1L-mediated H3K79me2/3. We use this information to show that a t(4;11) cell line is sensitive to a combination of ABT-199 and DOT1L inhibitors. In addition, ABT-199 synergizes with standard induction-type therapy in a xenotransplant model, advocating for the introduction of ABT-199 into therapeutic regimens for MLL-rearranged leukemias.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Proteína de Leucina Linfoide-Mieloide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonamidas/farmacologia , Animais , Linhagem Celular Tumoral , Genes bcl-2 , Histona-Lisina N-Metiltransferase/genética , Humanos , Metilação , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteína de Leucina Linfoide-Mieloide/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
8.
Cancer Cell ; 27(3): 409-25, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25759025

RESUMO

Studying 830 pre-B ALL cases from four clinical trials, we found that human ALL can be divided into two fundamentally distinct subtypes based on pre-BCR function. While absent in the majority of ALL cases, tonic pre-BCR signaling was found in 112 cases (13.5%). In these cases, tonic pre-BCR signaling induced activation of BCL6, which in turn increased pre-BCR signaling output at the transcriptional level. Interestingly, inhibition of pre-BCR-related tyrosine kinases reduced constitutive BCL6 expression and selectively killed patient-derived pre-BCR(+) ALL cells. These findings identify a genetically and phenotypically distinct subset of human ALL that critically depends on tonic pre-BCR signaling. In vivo treatment studies suggested that pre-BCR tyrosine kinase inhibitors are useful for the treatment of patients with pre-BCR(+) ALL.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Regulação Neoplásica da Expressão Gênica , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Células Precursoras de Linfócitos B/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Ensaios Clínicos como Assunto , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Dados de Sequência Molecular , Fosfatidilinositol 3-Quinase/metabolismo , Fator de Transcrição 1 de Leucemia de Células Pré-B , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Proto-Oncogênicas c-bcl-6 , Transdução de Sinais , Quinase Syk , Regulação para Cima , Quinases da Família src/metabolismo
9.
Mol Cell Oncol ; 1(2): e955330, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-27308325

RESUMO

Although there has been great progress in the treatment of human cancers, especially leukemias, many remain resistant to treatment. A major current focus is the development of so-called epigenetic drugs. Epigenetic states are stable enough to persist through multiple cell divisions, but by their very nature are reversible and thus are amenable to therapeutic manipulation. Exciting work in this area has produced a new breed of highly specific small molecules designed to inhibit epigenetic proteins, some of which have entered clinical trials. The current and future development of epigenetic drugs is greatly aided by highly detailed information about normal and aberrant epigenetic changes at the molecular level. In this review we focus on a class of aggressive acute leukemias caused by mutations in the Mixed Lineage Leukemia (MLL) gene. We provide an overview of how detailed molecular analysis of MLL leukemias has provided several early-stage epigenetic drugs and propose that further study of MLL leukemogenesis may continue to provide molecular details that potentially have a wider range of applications in human cancers.

10.
Cell Rep ; 3(1): 116-27, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23352661

RESUMO

The Mixed Lineage Leukemia (MLL) protein is an important epigenetic regulator required for the maintenance of gene activation during development. MLL chromosomal translocations produce novel fusion proteins that cause aggressive leukemias in humans. Individual MLL fusion proteins have distinct leukemic phenotypes even when expressed in the same cell type, but how this distinction is delineated on a molecular level is poorly understood. Here, we highlight a unique molecular mechanism whereby the RUNX1 gene is directly activated by MLL-AF4 and the RUNX1 protein interacts with the product of the reciprocal AF4-MLL translocation. These results support a mechanism of transformation whereby two oncogenic fusion proteins cooperate by activating a target gene and then modulating the function of its downstream product.


Assuntos
Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 4/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Regulação Leucêmica da Expressão Gênica , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Ativação Transcricional , Translocação Genética/genética , Sequência de Aminoácidos , Linhagem Celular Tumoral , Proliferação de Células , Imunoprecipitação da Cromatina , Loci Gênicos/genética , Humanos , Leucemia/genética , Modelos Biológicos , Dados de Sequência Molecular , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Prognóstico , Ligação Proteica/genética , Estabilidade Proteica , Resultado do Tratamento
11.
Exp Dermatol ; 21(8): 632-4, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22776000

RESUMO

The miRNA expression profiles of skin biopsies from 14 primary cutaneous anaplastic large cell lymphoma (C-ALCL) patients were analysed with miRNA microarrays using the same control group of 12 benign inflammatory dermatoses (BID) as previously used to study the miRNA expression profile of tumor-stage mycosis fungoides (MF). We identified 13 differentially expressed miRNAs between C-ALCL and BID. The up-regulation of miR-155, miR-27b, miR-30c and miR-29b in C-ALCL was validated by miRNA-Q-PCR on independent study groups. Additionally, the miRNA expression profiles of C-ALCL were compared with those of tumor-stage MF. Although miRNA microarray analysis did not identify statistically significant differentially expressed miRNAs, miRNA-Q-PCR demonstrated statistically significantly differential expression of miR-155, miR-27b, miR-93, miR-29b and miR-92a between tumor-stage MF and C-ALCL. This study, the first describing the miRNA expression profile of C-ALCL, reveals differences with tumor-stage MF, suggesting a different contribution to the pathogenesis of these lymphomas.


Assuntos
Perfilação da Expressão Gênica , Linfoma Anaplásico de Células Grandes/metabolismo , MicroRNAs/metabolismo , Micose Fungoide/metabolismo , Neoplasias Cutâneas/metabolismo , Biópsia , Humanos , Linfoma Anaplásico de Células Grandes/patologia , Análise em Microsséries , Micose Fungoide/patologia , Estadiamento de Neoplasias , Pele/patologia , Dermatopatias/metabolismo , Dermatopatias/patologia , Neoplasias Cutâneas/patologia
12.
Histopathology ; 61(1): 18-25, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22372580

RESUMO

AIMS: Although many immunohistochemical (IHC) cancer biomarkers have been identified, very few have translated into routine clinical practice, primarily because of technical and observational inconsistencies between studies. However, despite the obvious need to address such variability, very few studies have done so. METHODS AND RESULTS: Using bcl-6, CD10, MUM1, GCET1 and FOXP1 antibody staining on diffuse large B-cell lymphoma cases (n = 138) as a model, we employed Cronbach α analysis to quantify interobserver and intraobserver variability between four independent observers (two per institution), scoring two tissue microarrays (TMAs) stained at both institutions using differing staining procedures. The overall concordance between all observations irrespective of staining procedure or TMA source was high (average α = 0.951), with the highest level being reached for CD10 staining (average α = 0.967) and the lowest for bcl-6 (average α = 0.924). Interslide and interinstitutional reproducibility were similarly high (average α = 0.952 and average α = 0.934, respectively). Interobserver/intrainstitutional and interobserver/interinstitutional comparisons showed lower levels of concordance (average α = 0.870 and average α = 0.877, respectively), and intraobserver/interinstitutional comparisons showed the lowest levels of concordance (average α = 0.810), particularly for bcl-6 staining (α = 0.658). CONCLUSIONS: This study suggests that most variability in IHC studies between centres results from inherent limitations of the biomarkers investigated rather than procedural or observational differences.


Assuntos
Biomarcadores Tumorais/metabolismo , Imuno-Histoquímica/métodos , Linfoma Difuso de Grandes Células B/metabolismo , Humanos , Imuno-Histoquímica/estatística & dados numéricos , Linfoma Difuso de Grandes Células B/diagnóstico , Variações Dependentes do Observador , Reprodutibilidade dos Testes , Análise Serial de Tecidos
13.
Cancers (Basel) ; 4(3): 904-44, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-24213472

RESUMO

Epigenetics is often defined as the study of heritable changes in gene expression or chromosome stability that don't alter the underlying DNA sequence. Epigenetic changes are established through multiple mechanisms that include DNA methylation, non-coding RNAs and the covalent modification of specific residues on histone proteins. It is becoming clear not only that aberrant epigenetic changes are common in many human diseases such as leukemia, but that these changes by their very nature are malleable, and thus are amenable to treatment. Epigenetic based therapies have so far focused on the use of histone deacetylase (HDAC) inhibitors and DNA methyltransferase inhibitors, which tend to have more general and widespread effects on gene regulation in the cell. However, if a unique molecular pathway can be identified, diseases caused by epigenetic mechanisms are excellent candidates for the development of more targeted therapies that focus on specific gene targets, individual binding domains, or specific enzymatic activities. Designing effective targeted therapies depends on a clear understanding of the role of epigenetic mutations during disease progression. The Mixed Lineage Leukemia (MLL) protein is an example of a developmentally important protein that controls the epigenetic activation of gene targets in part by methylating histone 3 on lysine 4. MLL is required for normal development, but is also mutated in a subset of aggressive human leukemias and thus provides a useful model for studying the link between epigenetic cell memory and human disease. The most common MLL mutations are chromosome translocations that fuse the MLL gene in frame with partner genes creating novel fusion proteins. In this review, we summarize recent work that argues MLL fusion proteins could function through a single molecular pathway, but we also highlight important data that suggests instead that multiple independent mechanisms underlie MLL mediated leukemogenesis.

14.
PLoS One ; 6(6): e20607, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21694761

RESUMO

Leukaemia is often associated with genetic alterations such as translocations, amplifications and deletions, and recurrent chromosome abnormalities are used as markers of diagnostic and prognostic relevance. However, a proportion of acute myeloid leukaemia (AML) cases have an apparently normal karyotype despite comprehensive cytogenetic analysis. Based on conventional cytogenetic analysis of banded chromosomes, we selected a series of 23 paediatric patients with acute myeloid leukaemia and performed whole genome array comparative genome hybridization (aCGH) using DNA samples derived from the same patients. Imbalances involving large chromosomal regions or entire chromosomes were detected by aCGH in seven of the patients studied. Results were validated by fluorescence in situ hybridization (FISH) to both interphase nuclei and metaphase chromosomes using appropriate bacterial artificial chromosome (BAC) probes. The majority of these copy number alterations (CNAs) were confirmed by FISH and found to localize to the interphase rather than metaphase nuclei. Furthermore, the proliferative states of the cells analyzed by FISH were tested by immunofluorescence using an antibody against the proliferation marker pKi67. Interestingly, these experiments showed that, in the vast majority of cases, the changes appeared to be confined to interphase nuclei in a non-proliferative status.


Assuntos
Genoma Humano/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Adulto , Núcleo Celular/genética , Proliferação de Células , Criança , Aberrações Cromossômicas , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA/genética , Feminino , Imunofluorescência , Humanos , Hibridização in Situ Fluorescente , Lactente , Cariotipagem , Masculino , Reprodutibilidade dos Testes
15.
Biol Direct ; 6: 23, 2011 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-21592325

RESUMO

BACKGROUND: MicroRNAs are small RNA species that regulate gene expression post-transcriptionally and are aberrantly expressed in many cancers including hematological malignancies. However, the role of microRNAs in the pathogenesis of multiple myeloma (MM) is only poorly understood. We therefore used microarray analysis to elucidate the complete miRNome (miRBase version 13.0) of purified tumor (CD138+) cells from 33 patients with MM, 5 patients with monoclonal gammopathy of undetermined significance (MGUS) and 9 controls. RESULTS: Unsupervised cluster analysis revealed that MM and MGUS samples have a distinct microRNA expression profile from control CD138+ cells. The majority of microRNAs aberrantly expressed in MM (109/129) were up-regulated. A comparison of these microRNAs with those aberrantly expressed in other B-cell and T-cell malignancies revealed a surprising degree of similarity (~40%) suggesting the existence of a common lymphoma microRNA signature. We identified 39 microRNAs associated with the pre-malignant condition MGUS. Twenty-three (59%) of these were also aberrantly expressed in MM suggesting common microRNA expression events in MM progression. MM is characterized by multiple chromosomal abnormalities of varying prognostic significance. We identified specific microRNA signatures associated with the most common IgH translocations (t(4;14) and t(11;14)) and del(13q). Expression levels of these microRNAs were distinct between the genetic subtypes (by cluster analysis) and correctly predicted these abnormalities in > 85% of cases using the support vector machine algorithm. Additionally, we identified microRNAs associated with light chain only myeloma, as well as IgG and IgA-type MM. Finally, we identified 32 microRNAs associated with event-free survival (EFS) in MM, ten of which were significant by univariate (logrank) survival analysis. CONCLUSIONS: In summary, this work has identified aberrantly expressed microRNAs associated with the diagnosis, pathogenesis and prognosis of MM, data which will prove an invaluable resource for understanding the role of microRNAs in this devastating disease.


Assuntos
MicroRNAs/genética , Gamopatia Monoclonal de Significância Indeterminada/genética , Mieloma Múltiplo/genética , Neoplasias de Plasmócitos/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise por Conglomerados , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , MicroRNAs/classificação , Pessoa de Meia-Idade , Gamopatia Monoclonal de Significância Indeterminada/classificação , Gamopatia Monoclonal de Significância Indeterminada/diagnóstico , Gamopatia Monoclonal de Significância Indeterminada/patologia , Mieloma Múltiplo/classificação , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/patologia , Neoplasias de Plasmócitos/classificação , Neoplasias de Plasmócitos/diagnóstico , Neoplasias de Plasmócitos/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , Translocação Genética , Regulação para Cima
16.
Mol Oncol ; 5(3): 273-80, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21406335

RESUMO

MicroRNAs (miRNAs) are small RNA species that regulate gene expression post-transcriptionally and are aberrantly expressed in many malignancies including lymphoma. However, the role of miRNAs in the pathogenesis of T-cell lymphoid malignancies is poorly understood. Previously we examined the miRNA profile of Sézary syndrome (Sz), a leukemia of skin-homing memory T cells. In this study we determined the complete miRNome of mycosis fungoides (MF), the most common type of cutaneous T cell lymphoma. The miRNA profile of skin biopsies from 19 patients with tumor stage MF and 12 patients with benign inflammatory dermatoses (eczema and lichen planus) were compared by microarray analysis. We identified 49 miRNAs that are differentially expressed in tumor stage MF compared to benign inflammatory dermatoses using ANOVA analysis (P < 0.05, Benjamini-Hochberg corrected). The majority of the differentially expressed miRNAs (30/49) were up-regulated in tumor stage MF. The most significant differentially expressed were miR-155 and miR-92a (both up-regulated in tumor stage MF), while miR-93 showed the highest up-regulation in tumor stage MF with a fold difference of 5.8. Differential expression of a selection of these miRNAs was validated by miRNA-Q-PCR on additional test groups (tumors and controls). None of the miRNAs up-regulated in tumor stage MF was previously shown to be up-regulated in Sz, and only 2 of the 19 miRNAs down-regulated in tumor stage MF were also down-regulated in Sz. Taken together this report is the first describing the miRNA signature of tumor stage MF.


Assuntos
Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Micose Fungoide/genética , Neoplasias Cutâneas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Cromossomos Humanos/genética , Análise por Conglomerados , Variações do Número de Cópias de DNA/genética , Feminino , Humanos , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima
18.
Blood ; 116(7): 1105-13, 2010 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-20448109

RESUMO

MicroRNAs are commonly aberrantly expressed in many cancers. Very little is known of their role in T-cell lymphoma, however. We therefore elucidated the complete miRNome of purified T cells from 21 patients diagnosed with Sézary Syndrome (SzS), a rare aggressive primary cutaneous T-cell (CD4(+)) lymphoma. Unsupervised cluster analysis of microarray data revealed that the microRNA expression profile was distinct from CD4(+) T-cell controls and B-cell lymphomas. The majority (104 of 114) of SzS-associated microRNAs (P < .05) were down-regulated and their expression pattern was largely consistent with previously reported genomic copy number abnormalities and were found to be highly enriched (P < .001) for aberrantly expressed target genes. Levels of miR-223 distinguished SzS samples (n = 32) from healthy controls (n = 19) and patients with mycosis fungoides (n = 11) in more than 90% of samples. Furthermore, we demonstrate that the down-regulation of intronically encoded miR-342 plays a role in the pathogenesis of SzS by inhibiting apoptosis, and describe a novel mechanism of regulation for this microRNA via binding of miR-199a* to its host gene. We also provide the first in vivo evidence for down-regulation of the miR-17-92 cluster in malignancy and demonstrate that ectopic miR-17-5p expression increases apoptosis and decreases cell proliferation in SzS cells.


Assuntos
Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/fisiologia , Síndrome de Sézary/genética , Apoptose , Western Blotting , Proliferação de Células , Perfilação da Expressão Gênica , Humanos , Luciferases/metabolismo , Linfoma de Células B/sangue , Linfoma de Células B/diagnóstico , Linfoma de Células B/genética , MicroRNAs/genética , Micose Fungoide/sangue , Micose Fungoide/diagnóstico , Micose Fungoide/genética , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Síndrome de Sézary/sangue , Síndrome de Sézary/diagnóstico , Linfócitos T/metabolismo
19.
Haematologica ; 95(3): 432-9, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20207847

RESUMO

BACKGROUND: T follicular helper (T(FH)) cells reside in the light zone of germinal centers and are considered the cell of origin of angioimmunoblastic T-cell lymphoma. Recently, CXCL13, PD-1 and SAP were described as useful markers for T(FH) cells and angioimmunoblastic T-cell lymphoma but also reported in some peripheral T-cell lymphomas, not otherwise specified. DESIGN AND METHODS: In the present study the expression pattern of ICOS protein was investigated by immunohistochemistry-based techniques in routine sections of normal lymphoid tissues and 633 human lymphomas. RESULTS: Cells strongly positive for ICOS were restricted to the light zone of germinal centers and co-expressed T(FH)-associated molecules. In addition, weak to moderate ICOS expression was observed in a small proportion of FOXP3-positive cells. In lymphomas, ICOS expression was confined to angioimmunoblastic T-cell lymphoma (85/86), peripheral T-cell lymphomas of follicular variant (18/18) and a proportion of peripheral T-cell lymphomas, not otherwise specified (24/56) that also expressed other T(FH)-associated molecules. CONCLUSIONS: ICOS is a useful molecule for identifying T(FH) cells and its restricted expression to angioimmunoblastic T-cell lymphoma and a proportion of peripheral T-cell lymphomas, not otherwise specified (showing a T(FH)-like profile) suggests its inclusion in the antibody panel for diagnosing T(FH)-derived lymphomas. Our findings provide further evidence that the histological spectrum of T(FH)-derived lymphomas is broader than previously assumed.


Assuntos
Antígenos de Diferenciação de Linfócitos T/metabolismo , Biomarcadores Tumorais/metabolismo , Linfadenopatia Imunoblástica/diagnóstico , Linfoma Folicular/diagnóstico , Linfoma de Células T Periférico/diagnóstico , Linfócitos T Auxiliares-Indutores/metabolismo , Células Cultivadas , Citometria de Fluxo , Humanos , Linfadenopatia Imunoblástica/metabolismo , Imunofenotipagem , Proteína Coestimuladora de Linfócitos T Induzíveis , Linfoma Folicular/metabolismo , Linfoma de Células T Periférico/metabolismo , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...